New treatment targets need to be identified in gastrointestinal stromal tumors (GISTs) to extend the treatment options for patients experiencing failure with small-molecule tyrosine kinase inhibitors, such as imatinib. Insulin-like growth factor (IGF)-II acts as an autocrine factor in several tumor types by binding to IGF receptor type 1 (IGF-1R) and/or the insulin receptor (IR) isoform A. The aim of the present study was to investigate the putative role of unprocessed pro-IGF-II, called 'big'-IGF-II, in GISTs. The imatinib-sensitive GIST882 and imatinib-resistant GIST48 cell lines secrete high levels of big-IGF-II as demonstrated by ELISA and Western blotting analyses. IR isoform A mRNA and protein expression, but not that of IGF-1R, was found in these KIT mutant cell lines and in KIT and platelet-derived growth factor receptor α-mutant GIST specimens. Down-regulation of either big-IGF-II or IR affected AKT and MAPK signaling and reduced survival in both cell lines. Disruption of big-IGF-II signaling in combination with imatinib had additive cytotoxic effects on GIST882 cells. IGF-II mRNA as determined by in situ hybridization was present in 91% of 60 primary GISTs. Immunohistochemical analysis of big-IGF-II protein expression was associated with moderate- to high-risk tumors compared with tumors with a lower risk classification (P < 0.028). Our data put forth the big-IGF-II/IR isoform A axis as an autocrine survival pathway and potential therapeutic target in GISTs.
'Big'-insulin-like growth factor-II signaling is an autocrine survival pathway in gastrointestinal stromal tumors
DOI:
10.1016/j.ajpath.2012.03.028
Pages:
181 (1): 303-312
Published in:
The American Journal of Pathology
Date of publication:
July, 2012
Status of the publication:
Published/accepted
Link to publication: