ANOVA–principal component analysis and ANOVA–simultaneous component analysis: a comparison

ANOVA–simultaneous component analysis (ASCA) is a recently developed tool to analyze multivariate data. In this paper, we enhance the explorative capability of ASCA by introducing a projection of the observations on the principal component subspace to visualize the variation among the measurements. We compare the significance of experimental effects for ASCA and ANOVA–principal component analysis (PCA), a similar tool to explore multivariate data, by using permutation tests. Furthermore, we quantify the quality of the loadings estimate obtained with ASCA and compare this with the loadings estimate obtained with ANOVA–PCA.

G. Zwanenburg, H.C.J. Hoefsloot, J.A. Westerhuis, J.J. Jansen, A.K. Smilde
2011; 25 (10): 561-567
Published in: 
Journal of Chemometrics
Date of publication: 
October, 2011
Status of the publication: